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Cavitation of a viscous fluid in narrow passages 

By G. I. TAYLOR 
Cavendish Laboratory, Cambridge 

(Received 5 March 1963) 

The conditions which determine the existence and position of cavitation in the 
narrow passages of hydrodynamically lubricated bearings have been assumed to 
be the same as those which produce cavitation bubbles, namely a lowering of 
pressure below that at which gas separates out of fluid. This assumption enables 
certain predictions to be made which in some cases are verified, but it does not 
provide a physical description of the interface between oil and air. Theoretical 
analysis of the situation seems to be beyond our present capacity, and in none of 
the experiments so far published has it been possible to measure both the most 
important relevant data, namely the minimum clearance and the oil flow 
through it. 

A method is described here which enables this to be done. It turns out that 
two physically different kinds of cavitation can occur. One of these is well 
described by the existing theory and assumption. Surface tension plays no part 
in it, and in most text books on hydrodynamic lubrication is not even mentioned. 
The other kind, which is akin to hydrodynamic separation rather than bubble 
cavitation, depends essentially on surface tension. Both kinds appear clearly 
in published photographs taken through transparent bearings, but the experi- 
menters do not seem to have distinguished between them. 

The reason why surface tension, which is only able to supply stresses that are 
exceedingly small compared with the pressure variation in the fluid itself, may 
have a large effect on the flow can be understood by considering the flow of a 
viscous fluid in a tube when blown out by air pressure applied at  one end. For 
any given length of fluid the rate of outflow depends almost entirely on the 
pressure applied, the surface tension force being negligible; but the amount of 
fluid left in the tube after the air column has reached the end depends essentially 
on surface tension. 

1. Introduction 
Cavitation or separation in the oil film of hydrodynamic lubrication has long 

been recognized as an important factor in the design of bearings and engineers 
have exercised much ingenuity in trying to allow for it, but rather little effort 
has been devoted to the study of the phenomenon itself. I think that there are 
three main reasons for this. The first is that a simple journal bearing is essentially 
a mechanism by which a rotating shift can be supported against a lateral load 
so that the geometry of the lubricating fluid depends on the load as well as the 
peripheral speed and the difference in radii between the shaft and the bearing. 
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This leads to great complication in the analysis which absorbs much of the 
attention of the workers in the subject. The second is that it is very difficult to 
make experiments which can reveal the physical conditions that determine the 
position of the meniscus which separates the fully lubricated from the separated 
part of a lubrication film, particularly when the geometry of the solid surface 
is not predetermined, and in nearly all the recorded experiments it is not. A third 
reason is that in hydrodynamically lubricated bearings the fluid pressures in 
the high pressure parts are usually great compared with one atmosphere but 
the negative pressure in the part (if any) of the bearing where cavitation has 
occurred is usually very much smaller so that it makes little contribution to the 
total reaction between bearing surface and shaft. It is sufficient for most practical 
purposes to assume that the pressure is positive throughout. 

The interest, even the practical interest, of cavitation or separation of viscous 
fluids flowing in narrow passages is not limited to its occurrence in lubrication 
theory and in other cases, where great pressures do not occur, surface tension, 
which may justifiably be left out of consideration in most problems in lubrication 
theory, may be of primary importance. 

In  designing experiments to determine the physical character of the meniscus 
separating a viscous lubricant from the outside air it  seems essential to reduce 
the number of variables. The first step is obviously to use predetermined geometry 
and to limit the motion to two dimensions. The simplest practical way to form 
a meniscus is to fill a cylindrical tube with viscous fluid and blow it out by air 
pressure applied to one end. The air forms itself into a column with a round end, 
which may be called the meniscus. This travels down the tube till it reaches the 
far end. After the meniscus has passed any point in the tube the fluid which is 
left behind stays practically at rest, because the viscosity of air is so much less 
than that of the fluid that the pressure in it is nearly constant along its length. 
The simplest measurement that can be made is the ratio m of the amount of 
fluid left behind to the internal volume of the tube, and measurements of this 
kind have been published (Fairbrother & Stubbs 1935; Taylor 1961; Bretherton 
1961). The main result is that, as had been expected on somewhat unsophisticated 
theoretical grounds, m depends only on the non-dimensional combination pU/T, 
wherep is viscosity, U the velocity o i  the meniscus relative to the wall of the tube 
and T is surface tension. This may be expressed by the equation 

m = Fl(pU/T) .  ( 1 )  

When p U / T  is small Fl is small, but as p U / T  increases Fl appears to approach an 
asymptotic limit. In  my experiments (Taylor 1961) which extended up to 
p U / T  = 1.9, m had risen to 0-56. In  some later experiments by Cox (1962) 
m nearly reached 0-60 when p U / T  was in the range 10-17.5. This point is men- 
tioned here to show that the asymptotic value of m is not 0.50 as it would be if 
the criterion were that the bubble cannot go faster through the tube than the 
maximum fluid velocity in the Poiseuille flow beyond the bubble which is driven 
by the air pressure in it. The significance of this fact will appear later. 

The other relevant measurement which could be made is the difference in 
pressure between the fluid on the two sides of the meniscus. It was not possible 
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to do this in my experiments but it is worth while considering the physical 
meaning of such measurements if they could be made. The flow far ahead of the 
nieniscus is the Poiseuille flow which is associated with a uniform pressure 
gradient 8a-2pV, a being the radius of the bore of the tube and V the mean 
velocity through it. To connect the pressure in the air column with the velocity 
of the meniscus it would be necessary to know how the uniform pressure gradient 
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FIGUXE 1. Distribution of pressure CEFOX in a tube due to bubble AOB. Pressure 
excess of that in the bubble is represented by the co-ordinate OY. 

in the fluid connects with the practically uniform pressure in the air. The sketch 
of figure 1 explains what is needed. AOB is the air bubble, OX is the axis of 
symmetry of the bubble and OY the radial co-ordinate. The distribution of 
pressure along the axis is represented on an axial plane OXY by the line CEFOX, 
and the pressure which would have existed at the vertex, 0, of the bubble if the 
uniform gradient which exists in the fluid far away from it had been continued 
up to the vertex is represented by D. Though it is a difficult matter to calculate 
the flow near the vertex, all that is necessary to connect the pressure in the air 
with the flow in the tube is the pressure difference 8p represented by OD, and 
since there is only one non-dimensional variable p U / T  in the problem, it seems 
that the pressure change 8p must be representable by an expression of the form 

It will be seen that to calculate how fast fluid would be blown out of a tube by 
a given pressure both Fl and Fz must be known, but since F, is likely to be com- 
parable with unity when p U / T  is large and must tend to 3 / ( p U / T )  when p U / T  
is small, a knowledge of F, is not nearly so important as that of Fl in most cases 
unless p U / T  is small. 

The problem presented by a bubble in a capillary tube was considered first 
because it is the simplest definable and easily realizable case of separation in 
a viscous fluid when the Reynolds number is so small that only the balance of 
viscous stresses and surface tension need to be taken into account. The analogous 
problem where a two-dimensional bubble is forced into fluid contained between 
two parallel plates cannot be materialized because the meniscus is unstable 
(Saffman & Taylor 1958), though cases with more complica.ted geometry, such 
as the flow when a cylinder rolls on a plane covered with viscous fluid, may 
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involve a stable meniscus. There seems, however, to be no reason why the 
equilibrium configuration should not be calculated except the great difficulty 
of doing so, even though it is not stable. This di%culty is increased by the fact 
that there appears to be no reason, except physical intuition, to suppose that 
any numerical solution would be unique. This question is given some speculative 
consideration in the appendix. 

2. Flow in a narrow gap between eccentric rotating cylinders 
The flow in a long fully lubricated journal bearing is well understood. To 

avoid geometrical complexities the simplest case will be considered, namely that 
of a very eccentric bearing, or more definitely, the narrow space or ‘nip ’ where 
two cylinders or a cylinder and aplane nearly come into contact, and the equations 
for the flow in that region will be reproduced in order to develop a method for 
finding where the meniscus could be located. The physical properties of the 
meniscus will be assumed to be analogous to those of the bubble in a capillary 
tube, namely that at  the meniscus 

and - (4) 

Here m is the ratio of the amount of fluid flowing at any section to the amount 
which would flow if the pressure gradient there were zero, and h is the distance 
between the surfaces. 

The use of (3) and (4) involves the assumption, which experiments to be 
described later seem to confirm, that the small deviation from exact parallelism 
of the two surfaces will not appreciably affect m or 8p. The convergence or diverg- 
ence of the passage has a great effect on the stability of the meniscus (Pearson 
1960; Pitts & Greiller 1961) and on the distribution of pressure in the passage, 
and in that way will have a predominating effect on the position at  which the 
meniscus will establish itself, but this is no reason for rejecting the relations (3) 
and (4) which are concerned only with local conditions close to a two-dimen- 
sional meniscus. 

Two cases may be considered: (a )  both surfaces are moving with velocity U ,  
so that m = q/Uh where q is the volume flowing past the nip per unit length; 
( b )  only one surface is moving, as in the case of a bearing, so that m = 3q/Uh. 

If x is the distance along the nip measured from the narrowest point where 
h = h,, the variation of h with x can be expressed approximately by the equation 

h = h0+x2/2R. ( 5 )  

Here R = (Rc1- Rc1)-l, (6) 

where R, and R, are the radii of the cylinders, R, being the larger and R, and R2 
are taken as both positive if the centre of the smaller cylinder is inside the larger 
cylinder. When the case considered is that of a cylinder rolling on a plane, R is 
evidently the radius of that cylinder. 
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It is convenient to use instead of x a co-ordinate 8 defined by 

tan 8 = x(SRh,)-*. (7) 
The equation for the distribution of pressure according to the Reynolds approxi- 
mation then takes the non-dimensional form 

This equation applies to both cases (a )  and ( b ) ,  but in case ( a )  the pressure p is 
related to p' by 

p = pf{12pU(3R)*h,%}, (9a) 
and in case (b)  

p = $p'{lZ,uU(2R)* hgt}. 

In both cases (a )  and ( b )  h is the ratio of the total flow through the nip to the flow 
if there had been no pressure gradient at 0 = 0, so that in both cases (a )  and (b)  

Ah, = mh. 
The solution of (8) is 

p' = 10 2 + fn + f sin 38- h(g8 + A n  + t sin 28 +&sin 469, ( 1 1 )  

where the constant of integration has been chosen so that p' = 0 when 8 = - &T, 

i.e. the pressure is atmospheric far from the nip in the upstream direction, or 
in other words it is flooded upstream. 

When h = 4, p = 0 at  0 = + $ 7 ~  as well as at 0 = - in and the distribution of 
p f  is antisymmetrical, being positive when 6' < 0 and negative when 0 > 0. 
The distribution of p' in this case is shown in figure 2 .  

3. Position of meniscus 
To find the position of the meniscus for given values of p U / T  and h,/R a dia- 

gram like figure 2 may be used. Lines showing the variation of p' with 8 for 
constant h can be plotted, but it is not necessary to cover the whole field because, 
as has been noted many times in the literature of lubrication theory, the flow can 
only divide at a plane where dpldx is positive. Figure 3, which covers a part of 
the field where a meniscus could occur, has therefore been prepared using the 
expression (1  1 )  and calculating p' for given values of 0 and A. 

The diagram of figure 3 is particularly suitable for finding the locus of the 
points where condition (3) can be satisfied both in case (a )  and in case ( 6 ) .  The 
definition of m as the ratio of the amount of fluid passing through the nip to the 
amount which would flow if there were no pressure gradient leads to 

(12 )  m = hh,/h = hcos2@. 

Thus lines of constant m can be drawn and, according to the condition (3), these 
will be lines of constant p U / T .  Such lines are shown in figure 3 for values of m 
from 0.03 to 0-70 and for m = 1. m = 1 is evidently the line which represents the 
points where the flow could divide without changing velocity, that is it is the 
line dp'lde = 0 or, using equation (12 ) ,  cost@ = A-l. 
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To fix the point in figure 3 which represents the position of the meniscus i t  is 
necessary to know h, as well aspUU/T. Assuming that we have measured F2(p U / T )  
the corresponding values of p' using (4) and (9) are 

- or ( 1 3 b )  
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FIGUXE 2 .  Distribution of pressure (a)  when completely flooded and (b )  when 
t,he Swift-Stieber condition is satisfied a t  B. 

If F2 were measured experimentally or calculated as a function of p U I T ,  the 
expressions ( 1 3 )  would be used to superpose lines of constant h,/R on figure 3 ,  
and the intersections of these lines with those of constant m and therefore 
constant pUIT would determine the points at which the meniscus would lie for 
any given value of p U / T  and h,/R. It will be noticed that when h,/R is very 
small, as it is in most bearings, p' is also small so that unless Pz(,uU/T) is very 
large the position of the meniscus is determined simply by the point where the 
axis p' = 0 cuts the appropriate line of constant p U / T .  In  other words it is only 
necessary to know F,(pU/T) in such cases. 

To discuss the stability of the meniscus a knowledge of Rz(,td7/T) is essentia-I. 
In discussing the origin of the streaks formed when a viscous fluid is spread on 
a flat sheet by means of a roller, Pearson (1960) assumed that the pressure 
difference between the two sides of a meniscus was 2Tlh, where h is the distance 
between the solid surfaces at the position of the meniscus. This is equivalent to 
assuming that the viscous stress in the neighbourhood of the meniscus which is 
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of order pUlh  is small compared with 2T/h, or in other words, that p U / T  is small. 
F,(pUlT) is then large., for by the definition in (4), F,(pU/T) = 2TIpU. 

The investigation can only be extended to cases where p U / T  is not small 
either by making an arbitrary assumption that FD in figure 1 is small compared 
with O F  or by including F,(pU/T) as an arbitrary constant, an assumption 
which is legitimate when (J  is constant as it is in cases (a )  and (b ) .  

FIGURE 3. Contours of p’ for constant values of h (1.25 to  1.45). 
and of rn (0.03 to  0-70 and 1.0). 

4. Apparatus for measurements of F,(pU/T) 
The main difficulty in measuring m is to obtain two-dimensional flow because 

when the two surfaces are parallel the meniscus is unstable (Saffman & Taylor 
1958). It is true that the meniscus may be stable in the diverging region down- 
stream of the nip, but the conditions which lead to such stability are complicated 
and not very well understood (Pearson 1960). Another difficulty is that of 
measuring m in a journal bearing. To collect and measure q, the volume which 
passes the nip per second would be difficult. In designing apparatus for deter- 
mining m as a function of p U / T  it seemed best to attempt to control m and 
measure U .  If the meniscus had been stable this would perhaps have involved 
varying U till the meniscus was brought to rest, but the instability prevented 
the direct use of this method. It was found, however, that the configuration 
illustrated in figure 4 stabilized the meniscus at  slow speeds. 

A Perspex block was cut accurately rectangular and a trough of uniform depth 
0.05 cm and length 12.4 em was cut in its lower face. This trough did not extend 
to the front end of the block. The apparatus could slide on a piece of plate glass, 
selected optically for flatness by Messrs Pilkington, and as i t  moved i t  deposited 
a sheet of fluid 0.025 cm thick on the glass. The fluid was supplied at  a vertical 
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chamber cut in the Perspex as indicated a t  the section AAin figure 4. The object 
of the long shallow trough hereafter called the regulating chamber was merely 
to  regulate the supply of fluid to an observation chamber between the glass and 
a second short adjustable block of Perspex which is shown in the section CC. 
This block was 4.5 em long. If h, is the depth of the regulating trough and it, the 

C 
I B A 

Cross-smion Cross-section Cross-sectioiz cc BB AA 
FIGURE 4. Perspex block apparatus. 

height of the channel beneath the movable block, the flow in this chamber can 
be defined by the ratio 

actual flow in observation chamber 
flow which would exist if there were no pressure gradient there’ m =  

If the regulating trough were very long the flow in it would simply be + Uh,, where 
U is the velocity of the block over the glass. The actual flow in the chamber at  
C is therefore &Uh,, but if there were no pressure gradient in the observation 
chamber the flow would be $Uh, so that 

m = hO/hl. (14) 

Owing to the fact that the length of the observation chamber C was small 
compared with that of the regulating chamber it was first considered justifiable 
to take m as h,/h,. Later a correction (see equation (18)) was applied which took 
account of the fact that the length of the observation chamber was comparable 
with that of the regulating chamber, but did not allow for changes in pressure 
between the two sides of the meniscus due to surface tension. 

The experiment consisted in towing the block in a straight line over the glass 
a t  gradually increasing speeds. The meniscus was always hollow, but at slow 
speeds it sloped away from the upper block as indicated in figure 4. As the speed 
increased the meniscus became hollower till finally it became apparently hori- 
zontal and tangential to the observation chamber a t  the top. At that stage its 
horizontal sections were straight lines. A small increase in speed then made the 
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meniscus begin to curye slightly in horizontal sections so that it was no longer 
two-dimensional. As the speed increased the middle of the meniscus withdrew 
from the middle of the trailing edge of the observation chamber and the cur- 
vature of horizontal sections increased till an unstable condition was reached at  
which it suddenly began to move forward without any further increase in the 
speed of the block. The meniscus frequently divided but it always ran forward 
as far as the rear end of the regulating channel. The value of U which was 
measured was that at which curvature first appeared in the horizontal sections, 
because that was the point at which the meniscus was two-dimensional, i.e. 
cylindrical, and tangential to the top of the observation chamber. The values 
of U so found were multiplied by p / T  and are plotted against h,/h in figure 6. 

5. New apparatus 
The curvature in horizontal sections of the meniscus was no doubt due to the 

fact that the channel was not very wide compared with its depth. A wider block 
would certainly have reduced the gap between the speed at  which the horizontal 
curvature began and the speed a t  which the meniscus ran forward unstably to 
form air fingers. Even so the block had a considerable disadvantage because the 
glass plate on which it moved was only 30 in. long, and with the larger values of 
h,/h, the flow pattern had not settled down to its final steady state by the time 
the block had traversed 30 in. 

To overcome these difficulties a new apparatus was designed in which a cylinder 
could rotate continuously in a trough of fluid and a fixed concentric arc with 
clearance h, was used to regulate the flow into an observation chamber. This 
apparatus is shown in figure 5. A cylinder B of radius 7.60 cm and length 38.0 cm 
could rotate in ball bearings held in a strong steel frame. A regulating Perspex 
block A whose lower surface was a cylinder of radius 7.65 cm was fixed concentric 
with the cylinder so that the resulting space between them was 0.05cm thick. 
The angle covered by this block was 78O,* so that the length of the regulating 
space was 10.4cm. The width in the direction of the generators of the cylinder 
was 22.4 cm. The accuracy of the setting was ensured by laying flexible spacers 
0.050 cm thick on the cylinder and then bringing the regulating block onto them. 
In this position the block was fixed to a strong frame by suitable adjusting 
screws. The fluid was contained in a trough C (figure 5) which was filled up to the 
level of the top of the cylinder. Leakage a t  the point where the $in. steel axle 
of the cylinder passes through the ends of the trough C was prevented by means 
of O-rings set in the steel frame. The trough which was made of tinned steel sheet 
was slightly flexible so that as the trough filled a small leak began to develop as 
the weight of fluid increased during filling. This was cured by adjusting supports 
between the strong frame and the trough. 

The observation chamber in which the meniscus was observed was the space 
under a Perspex block D (figure 5) which was fixed by bolts E passing through 
slots in D which allowed for adjustment of the distance h, of D from the cylinder. 

* When figure 5 was drawn the dimensions of the regulating block A had been mislaid 
so that the position of its lower corner is incorrectly shown. The angle 78' was found on 
dismantling the apparatus. 
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The bottom of the block D was a part of a cylinder of radius 7.65 cm. To set up 
the apparatus flexible strips of the required .thickness were made and placed on 
the cylinder. The block D was then laid so that its rear face was in contact with 
the forward face of the regulating block (which was in an axial plane), and its 
forward bottom corner Fwas in contact with the flexible spacers. Since the spacers 
were lying on the cylinder and the block covered an angle of 36" the thickness 
of the observation chamber was slightly greater at the rear than at  the forward end 

A 
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FIGURE 5. Cylindrical apparatus. 

by an amount (h,  - h,) (see 36" - 1). The cylinder was driven through a train of 
continuously varying and fixed reduction gears by a constant speed motor so 
that the peripheral velocity U of the cylinder could be slowly increased till the 
meniscus withdrew from the forward end F of the observation chamber. As with 
the Perspex slider shown in figure 4, the cavitating air-fingers always ran forward 
to the rear end of the regulation chamber, The speed U at which this occurred 
could be determined with good repeatability, but to ensure that the flow was 
two-dimensional i t  was necessary to fit end-plates lined with sorbo-rubber or 
felt which could be fitted to the end of regulating block A and to D to prevent 
air or fluid from being sucked laterally into the rear end of the observation 
chamber where the lowest pressures occurred. Even this precaution had to be 
supplemented by guide vanes outside the end-plates to ensure that the outside 
of the felt or sorbo rubber lining was flooded with the fluid, for it was found that 
if any air got through, bubbles in the observation chamber destroyed the two- 
dimensional character of the flow and upset the conditions leading to the 
instability of the meniscus. 

The fluids used were pure glycerine and glycerine diluted with 5 %  water. 
The viscosity of the fluid used was measured a t  a range of temperatures and the 
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temperature was measured before and after each experiment. Gylcerine does 
not wet Perspex completely and a thin sheet of glycerine on the surface develops 
dry areas after a time. This fact does not seem to affect the critical value of Cr, 
for in the Perspex block experiments both wetting oils and glycerine were used 
and no difference was found between the results obtained. Oil was not used in 
the cylinder apparatus because of the difficulty of cleaning it. The surface tension 
T was taken as 63 dynjcm throughout because the variation with temperature 

@2r0'19 0.1 0.103 
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FIGUEE 6. Measurements of pU/T  a t  which flow ceased to be two-dimensional for fixrtl 
values of' h,/h, .  Parallel observation chamber: 8 h,  = 0.05cm; h ,  = 0.10cm; 
0 ho = 0.15cm. Rectangular block: @ h,  = 0.05cm. Expanding observation chamber: 
+ angle = 2.8"; angle = 1-3'. Limiting values for h,  = 0.05, 0.10, 0.15 cm. 

is small. Some uncorrected results obtained with the regulating chamber of 
uniform depth h, = 0-05 em are marked in figure 6 by the symbol 8. It will be 
seen that these are in fairly good agrcement with those obtained with the flat 
Perspex block, at any rate for values o f p U / T  up to 0-6. At higher values of 
p U / T  the limitations of the flat block apparatus were making the results 
unreliable. 

6. Experiments with larger regulating channel 
As the speed rose the difficulty of excluding bubbles from the chamber in- 

creased and the highest values of p U / T  obtainable was 0.6. To increase p U / T  
without increasing the suction a t  the rear end of the observation chamber it 
was necessary to increase h,. To make a regulating space uniform with thickness 
0-1cm the cylindrical surface of the block A (figure 5) should have been re- 
machined to a radius 7-70 and in fact this has now been done, but the experi- 
ments have not yet been repeated with the re-machined block. On the other 
hand, the flow regulating effect of a long narrow space upstream of the observa- 
tion chamber does not depend on its having a uniform thickness, but a correction 
must be applied when it does not. 
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7. Corrections 
If h is known as a function of x the distance along the regulating block, the 

equivalent thickness of the block of the same length but uniform thickness which 
would deliver the same volumetric rate of flow can be found by integrating 
Reynolds's equation. If q is the volumetric rate of flow per cm of the meniscus, 
Reynolds's approximation is 

and 

___ - _ - _ -  a* q in case (a ) ,  
12,udx h2 h3 

d* q in case (b).  
12,udx 2h2 h3 

When h is uniform and there is no pressure gradient h = 2q/U in case (b ) ,  and if 
h is variable but there is no difference in pressure at  the two ends of the channel 

the integrals extending along the block. Hence 

the integrals extending the total length of the regulating and observation cham- 
bers, but it is convenient to express (17) non-dimensionally in the form 

where h, is to be taken as some easily measurable quantity. 
To set the regulating block so that it formed a channel which was wider than 

0.05 cm, flexible spacers 0.10 ern thick were laid on the cylinder and the Perspex 
block of radius 7-65cm was brought down onto them and fixed rigidly. The 
depth of the channel at all points of the regulating space has first to be found. 
At its two ends it is h, (h, = 0.1 ern in the present case). If the radius of the lower 
surface of the regulating block is R + 6, R being that of the cylinder (6 = 0.05 ern 
in the present case), the depth h of the regulating space can be found by using 
the consideration that the method of setting up the regulating block ensures 
that h is symmetrical about its mid-point. If q5 is the angular co-ordinate and 
the mid-point of the regulating space is q5 = 0, it is found that 

( 1 9 )  

where a = 6/h, and 2q5, is the angle subtended by the regulating block (in this 
case 78"). To apply equation ( 1 9 )  it is sufficiently accurate to take the depth in 
the short observation chamber as uniform and equal to h, which is the measured 
depth of the channel a t  the forward end F (figure 5). The contributions of the 
observation chamber to the integrals in ( 1 8 )  are then (ho/h1)2q52 and (h0/h,)3q5z 
to the numerator and denominator, respectively, where q5z is the angle covered 

h = h,{a + ( 1  -a )  sec q50 cos $1, 
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by the observation chamber (in the present case $2 = 36'). The expression for 
m is therefore 

For the case when S = h, = 0.05 cm, ct = 1 and equation (30)  reduces to 

where KO.05 is a correcting factor to be applied to the approximate equation (14). 
The correcting factor Kblock for the Perspex block which had a regulating channel 
12.4cm long and an observation chamber 4.5 cm long is the same as (21) except 
that the fraction 78/36 is replaced by 13.4/4.5. The calculated values of K,.,, 
KO.,, and Kblock are given in table 1. The value of KWl was calculated numerically 
using (20). 

~~ ~ 

h 0 A  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

KO.1 1.095 1.108 1.125 1.142 1.153 1.156 1.147 1.122 
KO.,, 1.004 1.015 1.029 1.054 1.055 1.060 1.058 1.048 
Kbloek 1.006 1.010 1.020 1.035 1.046 1.047 1.050 1.040 

TABLE 1. Correction factors to  be applied to  measured values of h,/h,. 

8. Effect of gravity 
The neglect of the effect of gravity at  the meniscus produces little error except 

at very low speeds. There is a limiting value of h, above which the meniscus 
will leave the leading edge of the observation chamber no matter how small U 
may be. Since the thickness of the fluid sheet which is carried away is ih ,  the 
height of the bottom of the observation chamber above the top of the sheet is 
h, - ih ,  and the hydrostatic force, which must be balanced by the surface tension 
force 3T, is ipg(h, - ih0)2, where p is the fluid density. Thus the minimum value 
of m when U = 0 is h,/{+ho + (4T/pg)}&.  For glycerine ( 4 T / p g ) )  = 0.46 cm so that 
the value of m at U = 0 is h,/(&h,+ 0.46). When h, is 0.05 cm this is m = 0.103, 
for h, = 0.10 cm it is m = 0.19 and for h, = 0.15 cm it is m = 0.29. These limits 
are marked on figure 6. At first sight one might be inclined to think that since 
the value of m at U = 0 is comparable with that at finite values of p U / T  large 
errors might arise owing to the effect of gravity. This, however, seems to me 
unlikely because as soon as U is finite a comparatively large pressure defect at  
the meniscus can be built up by a very small change in the flow through the 
regulating channel, and all that gravity does is to change very slightly the rate 
of flow which is necessary to set up the conditions at the meniscus which lead to 
its retreat into the observation chamber. The values of m deduced by applying 
the correcting factors of table 1 are shown in figure 7. 

The principal generalizations that these experiments suggest are as follows. 
(1) The value of m at which the meniscus begins to retreat into the channel 

is a function of p U / T  only. 
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( 3 )  As p U I T  increases m appears to approach an asymptotic value which is 
certainly above 213, the value i t  has .when the flow close to the fixed surface 
begins to reverse its direction a t  points in the chamber where the effect of the 
meniscus in deflecting the streamlines is negligible and the Reynolds approxi- 
mation holds. This criterion was proposed by Hopkiiis (1957) and used for experi- 
ments on flow of type (a )  where it predicts m = +. 
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FIGCTRE 7 .  Corrected values of m. Parallel observation chamber: h ,  = 0.10cm; 
A h ,  = 0.05cm. Expanding observation chamber: + angle = 2.8"; U angle + 1.3". 
Rectangular block: @ h, = 0.05 cm. 

(3) At small values of p U / T  the curve gives the impression of being parabolic. 
A similar approximation has been noted in the case of a bubble in a capillary tube 
(Fairbrother & Stubbs 1935; Taylor 1961), though it has been shown (Bretherton 
1961) that the approximation ceases to be valid when m is less than about 
A rough approximation for the parabolic range of figure 7 is 

m = 0*85(puU/T)*. ( 2 2 )  

Fairbrother & Stubbs's empirical formula was m = l .O(pU/T)* but there is no 
reason to expect exact agreement between the two formulae. 

9. Experiments with diverging observation chamber 
The fact that the meniscus does not seem to be able to travel back when m is 

greater than some number which is in the neighbourhood of 213 suggests that if 
the observation channel were made to diverge instead of being parallel so that 
m could vary through the observation chamber from some small number to 1.0, 
the air cavity would not be able to reach the regulating block but would stop 
a t  some intermediate point. To make the Observation chamber diverge some thin 
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1 cm 
FIGURE 12. Cavitation between shaft and transparent bush at yCr/T N 0.12, 11, N 1.0 x 10-3cm. 

1 cm 
FIGURE 13. Cavitation between shaft and transparent bush at  pUIT N 0.03, h, N 0.3 x 10-Scm. 

TAYLOR 



Journnl of Fluid Mechanics, VOZ. 16, part 4 Plute 4 

FIGIJRE 11 .  Photograph showing both the. formation of air fingers and the 
reformation of the oil film. 

FIGURE 15. Photograph showing the reformat'ion of the oil film for tho same 
xraluc of h, as in figure 13 but with pUIT - 0.004. 
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Perspex wedges were cut and placed base downwards between the blocks A 
and D (figure 5). These are able to give the chamber divergence angles of 1.3" 
and 2.8") respectively. They were set with bases at the level of the top of the 
regulating space so that the maximum values of h,/h, is 1.0, at the upstream end 
of the observation channel. As U was gradually increased the meniscus became 
unstable at  the same value of p U / T  as when the channel was parallel and with 
the same value of h, at the open end. The instability which then occurred was 
very similar to that observed when air is forced into fluid contained between 
parallel plates (Saffman & Taylor 1958). It developed into air fingers which were 
separated by fluid columns whose widths were comparable with that of the 
fingers. Figure 8 (plate 1) is a photograph of the meniscus a t  that stage using 
the narrow wedge which made the chamber diverge a t  1.3". The fingers remained 
in this condition so long as the speed was kept constant (in fact the exposure of 
this photograph was 8sec) and their ends remained roughly on a generator of 
the cylinder corresponding with a constant value of h. 

The depth of the observation chamber at the level of the ends of the fingers 
was measured by inserting strips of flexible plastic material (Polythene) of known 
thickness as feelers. The results of these measurements are shown in figures 6 
and 7 by means of crosses, +, marked A, B, C, D, E in the case of the wider 
divergence, 3.8") of the observation chamber, and by squares, n, K, L, M, N for 
the smaller divergence 1.3". The points marked A and K represent the values of 
h,/h, where the meniscus began to retreat from the forward edge of the observa- 
tion chamber. With the accuracy of the measurements they lie on the curve 
obtained using the nearly parallel but very slightly converging channel obtained 
by bolting the movable block D (figure 5 )  directly to the regulating block A 
without inserting the wedges. The points B and L (figures 6 and 7) represent the 
points to which the meniscus retracted keeping the speed constant. The photo- 
graph of figure 8 (plate 1) corresponds with the point L in figure 6, but as will be 
seen this point is not very well determined since the ends of the fingers do not 
all come to rest a t  the same value of h. 

Figures 9 (plate 1) and 10 (plate 2) show the fingers when the divergence was 
2.8" and when p U / T  was 1-4 and 2.2 respectively and correspond with points 
I3 and F in figures 6 and 7. Figure 11 shows the fingers when the divergence was 
3.8" and p U / T  was 4.0. This is outside the range of figures 6 and 7 but m was 
hardly distinguishable from the value it had in the case p U / T  = 2.2.  

It will also be noticed in figures 8-10 that the fluid separating the air fingers 
extends to the leading edge of the Perspex block, but on figure 11 (plate 2) these 
fluid sheets have become so thin that surface tension pulls them back into the 
wedge-shaped observation chamber so that they part from the rear edge of the 
stationary block and the saddle-shaped meniscus appears as a bright spot. 
Similar effects have been noticed by Pearson (1960) and by Floberg (1961 a, b , c )  
using cylinder and plane corresponding with case (b)  and by Pitts & Greiller 
(1961) for case (a). 

It will be noticed that except for the case when the meniscus first leaves the 
stabilizing edge of the adjustable block the ends of the fingers lie remarkably 
closely on a line of constant h and that as the speed increases this line, whose 
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movement is represented by the dotted curve in figures 6 and 7, seems to approach 
more and more closely to the same asymptote as that of the two-dimensional or 
cylindrical meniscus which is about to leave the stabilizing edge and become 
unstable. Thus the asymptotic condition for large p U / T  seems to be one in which 
the flow separates, so that most of the fluid which leaves the region of separation 
is carried away on the cylinder in a sheet of uniform thickness, and only a very 
little is carried in the form of the thin sheets perpendicular to the cylinder which 
separate the air fingers. This point is referred to later and seems to be verified 
in figure 15 (plate 4). 

10. Cavitation 
The separation just described necessarily involves a pressure gradient up- 

stream of the meniscus which may lead to pressures which are so low that true 
cavitation must occur. Banks & Mill (1954), for instance, using apparatus in 
which both surfaces moved (case (a) ) ,  showed photographs of cavitation bubbles 
appearing a t  the point of lowest pressure in the flooded nip between two rotating 
cylinders. At speeds where the cavitation pressure is just attained a t  the point 
of minimum pressure these bubbles will not grow. They may disappear or they 
may be carried out as small bubbles. When the speed is higher so that the 
cavitation pressure extends over a larger area the bubbles will grow and will 
alter the pressure in the fluid round them. This stage of cavitation has been 
studied by Floberg (1961 a).  Finally, they may meet and form a continuous air 
space, or they may extend round the bearing in the form of fingers or streaks 
which do not join. This kind of cavitation seems to be that visualized by Swift 
(1932) and Stieber (1933). Curve (a )  of figure 2 shows the non-dimensional pres- 
sure curve for a flooded nip for which h = *. Bubbles will appear first at the point 
A. As the bubble spreads the minimum pressure will be reduced and h will 
therefore also be reduced. This process can proceed till the bubbles extend to 
the atmosphere and the pressure at the level of their vertices is atmospheric. 
The point B is then reached on the curve h = 1.225, where p = 0 and dp/dx = 0. 
The fingers of air cannot penetrate further because that would involve separation 
in the part of the pressure curve where dp/dx is positive which is impossible. 
The point B, figure 2, represents Swift’s condition in the case of a very eccentric 
bearing which is flooded upstream. 

The shapes of the air fingers in Swift’s type of cavitation must depend on two 
independent causes both of which tend to make the flooded areas between the 
fingers get narrower downstream. One cause is geometrical and is the widening 
ofthe gap h, and the other is the transfer of fluid beneath the meniscus. The points 
ofthe air fingers may be expected to be paraboloidal while they are still narrower 
than h, since that is the axisymmetrical shape whose cross-section increases 
linearly. This paraboloidal part would only extend to a length comparable with 
h and thereafter the shape will be determined by the two causes. If only the first 
Cause were operative, flooded areas between the fingers would occupy a pro- 
portion h/h, of the whole, h,$ being the value of h at the points of the fingers. 
In  that case the air spaces would not join together; Cole & Hughes (1956) show 
Some examples of this. The second cause would make tlie flooded areas get 
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narrower more rapidly than would be expected from purely geometrical con- 
siderations. 

These speculations resulted from a study of some photographs sent me by 
Prof. J. A. Cole. They show the cavitation of oil through a loaded transparent 
bush on a rotating shaft. Figure 12 (plate 3) shows the air fingers (black) when the 
shaft 0-9820in. in diameter is rotating a t  138rev/min in a bush 0-9840in. in 
diameter and 1-63 in. long. Figure 13 (plate 3) shows the same bearing with the 
same load, the shaft rotating at  34*6rev/min. It was not possible to measure h 
but it isclear thatitmusthavebeengreaterat 138thanat 34rev. Thismayaccount 
for the fact that the fingers are a greater distance apart in figure 12 than in 
figure 13. If the geometrical cause for the narrowing of the oil streaks were the 
only one operating it would have been expected that reduction in their width 
at  a given distance from the beginning of cavitation would be less in figure 12, 
than in figure 13. The fact that this is not true shows that the second cause, 
namely the transfer of fluid across the meniscus is operative and is probably the 
principal cause of the much wider angle of the pointed end of the air finger in 
figure 12 than in figure 13. 

Prof. Cole measured the viscosity of the oil in each of his experiments. He did 
not measure T but in most oils T lies between 20 and 40dynlcm. Using 
T = 30dyn/cm the values of pUIT in the experiments shown in figures 12 
and 13 are 0.12 and 0.03, respectively. No measurements of h, were made but 
Prof. Cole calculated the value of the eccentricity e using the theory of Sassenwald 
& Walther (1954), but interpolating between values calculated by these authors 
in order to make them applicable to his apparatus. The results were e = 0-61 
for figure 12 and e = 0.88 for figure 13. These correspond with h, = 1.0 x lo-3cm 
for figure 12 and 7Lo = 0.3 x cm for figure 13. The average distance between 
the fingers in these two cases is 0.22 em and 0.065 em so that in each case the 
spacing of the fingers is about 220 times the minimum clearance distance. 

11. Comparison of two types of cavitation 
Comparison of figures 12 and 13 with figures 8-11 reveals the physical differ- 

ence between the two types. In  separation cavitation the motion is mainly 
two-dimensional. The thin partitions between the air fingers carry only a small 
part of the fluid, the rest is carried in a thin sheet on the moving surface. In  true 
cavitation, starting inside the fluid, much of it  is carried in columns filling the 
space between the two surfaces and separated by air fingers. In  bearings these 
columns may be carried round the shaft unbroken or they may break down 
leaving a sheet of lubricant of variable thickness on the shaft. When this happens 
the meniscus which is the boundary of the region where the oil film is re-formed 
on the far side of the bearing may be expected to reproduce approximately the 
pattern of the fingers formed in the cavitation region. Figure 14 (plate 4) is one 
of Prof. Cole’s photographs showing the re-formation of the oil film under con- 
ditions where widely separated air fingers were formed, probably owing to 
cavitation of the Swift-Xtieber type. 

It will be noticed that the air fingers grow wider through their whole length 
till the oil column between them nearly disappears before the oil film is re- 
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formed. This can only be because the oil is passing under the menisci which form 
the edges of the oil columns. 

Sometimes, however, Prof. Cole obtained quite a different kind of re-formation 
meniscus. Figure 15 (plate 4) is an example. In  that case both the speed and the 
load were each one-eighth of that used in the experiment of figure 13 so that the 
eccentricity and, therefore the geometry in the two cases, should be nearly 
identical. On the other hand, both the maximum negative pressure which would 
exist if the film were continuous, and the parameter p U / T  were only one-eighth 
of that appropriate to figure 13. It is therefore to be expected that true cavitation 
would be more likely to occur under the conditions of figure 13 than those of 
figure 15. Unfortunately the illumination failed to show the part of the bearing 
where cavitation began in figure 15, but the fact that the re-forming meniscus 
is smooth suggests that the layer of oil carried found on the shaft was of uniform 
thickness. The thin lines seen in the cavitated area can only represent a small 
proportion of the oil carried round and may well be the remains of the thin 
films which separate the air fingers produced by separation rather than by true 
cavitation. 

12. Floberg's experiments 
Recently Prof. Birkhoff has called my attention to a number of papers by 

Floberg (1961a, b ,c ) .  In  the third of these he shows photographs very like Prof. 
Cole's. In  the second he shows photographs of cavitation of extra heavy Vactric 
lubricating oil when a cylinder 8cm diameter and 8cm long was rotated at  
distances h, = 0.01, 0.02, 0.04, and 0-06cm below a glass plate. Those taken a t  
h, = 0.02, 0.04, and 0.06 cm were very like figures 8-1 1 except that they are 
better photographs, but those at h, = 0.01 cm are quite unlike mine. Possibly 
the former show separation and the latter cavitation. It is therefore of interest 
to compare the observed positions of the cavitation with those calculated (a )  
using the Swift-Stieber condition, and ( b )  a separation condition based on my 
experiment. 

The experiment of which Floberg published photographs were carried out at  
speeds of 25 and 100rev/min or approximately U = 10.5 and 41.9 cmlsec so that 
only two values of pUIT occurred. Neither the viscosity nor the surface tension 
of the oil were recorded, but in answer to a letter, Dr Floberg wrote that at  22 "c' 
the viscosity was 3.5poise (i.e. g/cm sec). The surface tension was not known but 
in most lubricating oils it lies in the range 20-40dyn/cm so that approximate 
values of p U / T  can be estimated by assuming T = 30. The experiments were 
carried out under conditions where the oil space was flooded upstream of the 
nip so that the curves of figure 7 should be applicable, using equation (9b) for 
determining the pressure upstream of the meniscus. With R = 4.0cm, ,u = 3.5 
poise, U = 10.5 and 41*9cm/sec approximate values of p/p' in dyn/cm2 are 
given in table 2. The approximate values of p U / T  assuming T = 30dynlcm 
are given in the last column of the table. 

To find the position a t  which a two-dimensional meniscus could exist it is 
theoretically necessary to know 6p, the pressure difference between the two sides 
of the meniscus. This is not known except when p U / T  is small when it is 2Tlh. 
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When p U / T  is large the pressure difference must be of order pU/h .  Since 2Tlh 
and pU/h are less than 2T/h, and pU/h,, it  is useful to record the latter, when 
finding out whether it is justifiable to neglect the effect of Sp on the position of 
the meniscus. The relevant figures are given in the last three lines of table 2. 
It will be seen that they are of order l j l00 of p/p' in Floberg's experiments. 

h, (em) 0.01 0.02 0.04 0.06 pU/T  
plp'when U = 10.5 6 . 2 ~  lo5 2 . 2 ~  lo5 8 x lo4 4 x lo4 1.2 
pip' when U = 41.9 2.5 x lo6 8.8 x lo5 3 x lo5 1.3 x 10' 4.9 

,uU/h, when U = 10.5 3 . 2 ~  lo3 1 . 6 ~  lo3 8 x lo2 5 x lo2 1.2 
pUT/h, when U = 41.9 1 . 5 ~  lo4 7 x lo3 4 x lo3 2 4 x  lo3 4.9 

rotating under a transparent flat surface. 

2T/h,  dyn cm-2 6 x lo3 3 x lo3 1 . 5 ~  lo3 103 - 

TABLE 2. Data relating to Floberg's experiments with a cylinder 

In  practically all calculations relating to hydrodynamic lubrication it has been 
a,ssumed that the change in pressure on passing through the meniscus is negli- 
gible, so that the pressure distribution when the oil space is flooded upstream 
depends only on the position of the ends of the cavitation fingers, and is repre- 
sented in figure 3 by the curve of constant h which cuts p' = 0 at the position of 
the meniscus. 

To estimate the error in the meniscus position due to the neglect of Sp assuming 
that m is a function of p U / T  only, note that m = Acos20 so that the error 68 is 
(Shl2h) tan 0. The change in p' is 

The values of (ap'/a0), and (ap'/ah), can be estimated using figure 3 for any 
position on p' = 0. Thus near 0 = 45", h = 1.27 and (ap'/i3h)e is approximately 
1.0 while (ap'laf?), is approximately 0.2, so that 60 = Sp'/2-8 and since 
Sp = ( p / p ' )  Sp', it  follows that 60 = (p ' /p )  Sp/2.S. 

Comparing the figures in the last two lines in table 2 with those in lines 2 
and 3 it will be seen that p'Sp/p is of order ll200 for h, = 0.01 and about 1/50 
for h, = 0-06. The error therefore in neglecting Sp and using the relationship 
between m and 0 when p' = 0 is only a fraction of a degree in 0.  This relationship 
is given by setting p' = 0 in ( 1  1 ) .  It is 

and it is shown graphically in figure 16. 
If the value of m at which a two-dimensional or cylindrical meniscus can exist 

is a function of pUIT only, as it appears to be in my experiments, it  is possible to 
use the experimental curve of figure 7 with the theoretical curve of figure 16 to 
predict where such a meniscus could exist in Floberg's apparatus. For this 
purpose figure 17 was constructed showing the relationship between p U / T  and 
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tan0 = x(2Rh0)-:. Curve (1) shows the relationship so found. In  my experi- 
ments the two-dimensional meniscus was limited to the range 0 < p U / T  < 1.75. 
On the other hand, measurements of m corresponding with the ends of the air 
fingers were carried to pUIT = 2.8 and these are represented in figure 7 by a 
broken line. This broken line has been transferred to figure 17 as curve (2 )  by 
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FIGURE 16. Relationship between m and 0 for points in figure 3 on p' = 0. 

the same method as that used to produce curve (1) for the two-dimensional 
meniscus experiments, but it must be remembered that thereisno reason to believe 
that the broken curve of figure 7 would represent experiments with other dis- 
tributions of thickness in the narrow oil passage. Though the two-dimensional 
meniscus was expected a priori to depend only on the local conditions near the 
meniscus the stability of the meniscus certainly depends on the distribution of 
thickness of the oil passage (Pearson 1960; Greiller & Pitts 1961) and the 
positions of the ends of the fingers may do so also. 

13. Comparison with measurements of Floberg's photographs 
The main difficulty in attempting to measure x, the distance of the ends of 

the air fingers in Floberg's photograph from the narrowest point in the oil 
passage is that the position of this point was not marked on the photographs. 
In  a letter, however, Dr Floberg mentions that the method of lighting was such 
that the point x = 0 was close to the edge o fa  dark band which appeared in all 
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FIGURE 17. Points represent observed positions of the ends of air fingers in Floberg's 
experiments: A h 0 -  - 0.06, ho = 0.04, + h, = 0.02, El h, = 0.01. Lines represent: 
(1) position of two-dimensional meniscus using experimental data of figure 7; (2) poRitions 
of ends of fingers using data of figure 7: (3) Hopkins criterion (m = + for case ( b ) ) ;  (4) Swift- 
Stieber criterion; (5) continuation of line (1) when ordinates are increased in ratio 10 : 1. 

0.1 

005 

1 
Floberg's 

plate 
number 

30.1 
30.2 
31.1 
31.2 
32.1 
32.2 
33.1 
33.3 

2 

h0 

(em) 
0.06 
0.06 
0.04 
0.04 
0.02 
0.02 
0.0 1 
0.01 

3 

X 

(em) 
0.618 
0-469 
0.538 
0.412 
0-45 
0-33 
0.160 
0.137 

4 

tan 6 
0.892 
0.677 
0.9515 
0-728 
1.12 
0.830 
0.566 
0.485 

5 ti 

@! 
0 T 

4 1 O . 7  1.2 
34O.1 4.9 
43O.6 1.2 
36O.1 4.9 
48O.2 1.2 
39O.7 4.9 
29O.50 1.2 
2 5 O . 9  4.9 

TABLE 3. Measurements from Floberg's photographs and 
corresponding values of tan 6 = 2 / ( 2 ~ h , ) * .  

7 

Symbol 

A 
A 

+ 
+ 
0 
0 

~ 

It will be seen in figure 17 that the measurements made a t  ,uUU/T = 1.2 are 
near the lines (1) and (2) for h, = 0.02, 0.04 and 0.06 em and that they are far 
from the Swift-Stieber line. On the other hand the point corresponding with 
h, = 0.01 em is close to this line. 

Since the highest values of pUIT a t  which I measured the positions of the 
fingers was 2.8, it is not possible to make a comparison with Floberg's results a t  
pUIT = 4.9 but the positions of the points representing his photographs is 
consistent with a gradual increase in m for h, = 0.02, 0.04 and 0-06 cm as pUIT 
increases. The point for h, = 0.01 is very close to the Swift-Stieber line when 
pUIT = 4.9. 
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his photographs. Using this rough method for locating x = 0 the measurements 
given in column 3 of tzble 3 were made, and tan 8 and 8 were then tabulated in 
columns 4 and 5. The corresponding values of pU/T are given in column 6 and 
the points marked on figure 17 with the symbols of column 7, table 3. 
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These results seem to show that Floberg in his experiments got both types of 
cavitation, though he does not distinguish between them. He noticed that his 
results for h, = 0.01 cm were near the Swift-Stieber point and that the meniscus 
retreats slightly from the point x = 0 as the speed is reduced. This can be seen 
in figure 17 where the point for p U / T  = 1.2, h, = 0.01cm corresponds with a 
slightly greater value of x than that for p U / T  = 4.7. Floberg does not comment 
on the fact that in his experiments a t  h, = 0.02,0.04 and 0.06 cm, x is very much 
greater than the Swift-Stieber criterion would allow. One interesting feature of 
figure 17 is that at  each of the values of p T / U  a decrease in h, from 0.06 to 0.02 cm 
increases x/(2Rho)& continuously but a further decrease in h, to 0.01 cm causes 
the meniscus to retreat to the Swift-Stieber position. This again is evidence that 
a change in the physical nature of the cavitation took place between h,, = 0.02 
and 0.01 cm. 

14. Possible mode of transformation of one type of cavitation to the 
other 

It is known that internal cavitation occurs in oils at pressures far exceeding 
their vapour pressure owing to the existence of gases dissolved in them which 
are released with a comparatively small drop in pressure. This probably accounts 
for the fact that the greatest decrease in pressure calculated even for a flooded 
bearing, Floberg's experiment at h, = 0.01 cm and U = 10.5 cm/sec, is far less 
than an atmosphere, yet the Swift-Stieber condition seems to apply fairly closely. 

Table 2 shows that the value -PIP' was greater for p U / T  = 4.9, h, = 0.02 cm 
than for p U / T  = 1-2, h, = 0.01 cm, but figure 17 suggests that the Swift-Stieber 
cavitation did not occur in the former case but did in the latter. This may well 
be due to the fact that separation cavitation necessarily implies a reduction in 
pressure upstream of the meniscus. If this is sufficiently great internal cavitation 
may take place, but will be seen from figure 3 that as the position of the separa- 
tion meniscus moves back along the axis p' = 0 the maximum pressure defect, 
-p' ,  decreases. Thus though pip' is greater than pUIT = 4.9, h, = 0.2 cm than 
for p U / T  = 1.2, h, = 0.1 cm the pressure defect at  the pressure minimum is 
probably less in the former case than the latter. 

In  conclusion I wish to express my thanks to Prof. J. A. Cole for his photographs 
(figures 12-15), to Dr Leif Floberg for information about his experiments, and to 
Prof. Garrett Birkhoff for some useful discussion. 

Appendix 
Speculations on the uniqueness of magnetical solwtions of 

flow problems involving free surfaces 
The mathematical problem which would have to be solved to represent the flow 
when a viscous fluid is driven from a tube by air pressure applied at  one end is 
very difficult even when only two-dimensional flow is considered. In  that case 
the problem is to represent the meniscus between a viscous fluid and air when 
one or both of two bounding parallel planes move relative to it. The flow can be 
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represented by a stream function @ satisfying the field equation V4@ = 0 and 
the flow can be made steady by an appropriate translation of the whole field. 
The boundary conditions to be satisfied at the planes are that the two com- 
ponents of velocity are the same as those of the planes. On the meniscus, however, 
three conditions must be satisfied. These are: 

(i) the component of velocity normal to the meniscus is zero; 
(ii) the component of shear stress parallel to its surface is zero; 

(iii) the component of stress normal to its surface is (surface tension)/(radius 
of curvature of the meniscus). 

Since only two of these conditions can be satisfied at  an arbitrarily chosen sur- 
face the possibility of satisfying the third can only be realized by varying the 
shape of the meniscus. An experimenter would certainly expect a definite shaped 
meniscus to establish itself, but it may be very difficult to prove uniqueness 
mathematically. 

Some light might be thrown on this subject by recalling some simpler problems 
relating to the flow of an ideal non-viscous fluid with a free surface. Here the 
flow is irrotational and a t  fixed boundaries only one condition can be satisfied, 
but a t  a free surface it is possible to satisfy two. For instance, many free-surface 
problems involving steady flow under the action of gravity have been solved 
analytically, or by numerical processes and it has been recognized that the 
solutions are often not unique. The stationary waves produced by an obstacle 
on the bed of a stream, for instance, is perhaps a trivial example. In  that case 
solutions exist corresponding with cases where waves of arbitrary amplitude and 
phase are propagated upstream of the obstacle at  the speed of the stream. There 
is a unique case where no such waves exist and it has been pointed out that even 
the smallest viscosity would tend to make this case the nearest approximation 
to the real phenomenon exhibited by an obstacle in the bed of a smoothly 
flowing stream. 

In the case just cited the field extends to infinity but cases of non-unique flow 
with a closed free surface can be imagined. Consider, for instance, a free vortex 
partially filling a rigid circular cylindrical case. In  one example the free surface 
might be a concentric cylinder, but capillary ripples can exist on the free surface 
and if these are of such a length that they can travel backwards at  the speed 
of the fluid at  the free surface the motion is an alternative steady flow satisfying 
all the necessary boundary conditions. This example is peculiar because for a 
given amount of fluid in the rigid cylindrical boundary circular free steamlines 
are possible with all vortex strengths, but the alternative steady motions are 
only possible for discrete values of this strength, namely for those for which the 
circular free streamline is an integral number of the critical wavelength which 
can travel backwards at the speed which makes steady motion possible. 

The non-uniqueness of solutions where waves can exist is well understood but 
recently a more interesting case has been found. Garabedian (1957) has shown 
that there is a single infinite set of symmetrical solutions of the two-dimensional 
version of the problem of emptying water from a vertical tube which is closed at  
the top. Here both intuition, and experimentation in the axisymmetric case, 
lead to the expectation that only one of the solutions would represent the actual 
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phenomenon but there seems to be no convincing reason for the choice of any 
particular solution. Garabedian pointed out that one of them represents the case 
where the air column rises at a maximum rate, but there seems little justification 
for choosing that particular solution as the one which would occur if the two- 
dimensional bubble could be realized experimentally. (It has been pointed out 
to me by Garrett Birkhoff in a private communication that though one of 
Garabedian’s solutions represents the symmetrical bubble which rises at  maxi- 
mum speed a larger asymmetrical bubble which would rise at  a speed 4 2  times 
Garabedian’s maximum is theoretically possible.) 

Another case where an infinity of solutions of Vz$ = 0 can satisfy the relevant 
boundary conditions is provided by a Hele-Shaw cell (Saffman & Taylor 1958). 
In  that case i t  was shown experimentally that only one of the motions described 
by these solutions can be set up. Recently Jacquard & SBquier (1962) have shown, 
by tracing theoretically a method of setting up the motion, that the experi- 
mentally observed motion would result from the mode of imitation which they 
analyse. 

Uniqueness of frolo when viscous j u i d  is blown from a tube 
Acceptance of equation (1) pre-supposes uniqueness of flow. This is in accordance 
with experimental measurements made with tubes of varying bore and viscosity. 
Theoretical justification for ( 1 )  based solely on dimensional arguments is not 
convincing. Dimensional arguments can justifiably be used to state that if m 
is known all cases of flow are similar for a given value of ,uU/T. The justification 
for taking m as a function of p U / T  must be based either on detailed analysis of 
the flow, which at present seems to be outside the range of practical possibility 
for mathematicians, or on physical intuition. When the tube is flooded upstream 
from the meniscus (upstream when brought to rest by appropriate translation), 
as it is when fluid is blown from the tube by pressure applied at one end, p, T, 
the radius of the tube a, and the pressure gradient in the flooded portion, dpldx, 
are the parameters which can be varied at will. Poiseuille’s equation connects 
U / (  1 - m), p and a with dp/dx so that we can regard p ,  T ,  a and U / (  1 - m) as the 
factors variable at will. The only non-dimensional combination of these is 
p U / T ( l - - m ) ,  but there is no simple way in which a one-to-one relationship 
between p U / T  and 1 - m can be established. 

When the U is reversed so that fluid is blown into a tube which already contains 
fluid distributed uniformly on the walls, p U / T (  1 - m) is still variable at  will but 
since m is now fixed any value of p U / T  can occur for any value of m. 

It is curious that crude dimensional theory can apply when U is positive but 
not when it is negative. It seems reasonable therefore to expect that a mathe- 
matical solution when found will not be unique, but that the physical situation 
will be unique when U is positive andpU/T is known, whereas when U is negative 
it is necessary to know m as well as pU1T in order to establish a physical situation 
which is similar for variations in ,I(, U ,  T and a. 

This paper is an enlarged version of a contribution to the General Motors 
Symposium on Cavitation held at Detroit in September 1962. 
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